
Research Article Vol. 12, No. 4 / 1 April 2021 / Biomedical Optics Express 1882

Method for parametric imaging of attenuation by
intravascular optical coherence tomography

SUN ZHENG,1,2,* YANG FEI,1,2 AND SUN JIAN3

1Department of Electronic and Communication Engineering, North China Electric Power University,
Baoding 071003, Hebei, China
2Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University,
Baoding 071003, Hebei, China
3Department of Radiology, Hebei University Affiliated Hospital, Baoding 071003, Hebei, China
*sunzheng@ncepu.edu.cn

Abstract: Catheter-based intravascular optical coherence tomography (IVOCT) is a powerful
imaging modality for visualization of atherosclerosis with high resolution. Quantitative charac-
terization of various tissue types by attenuation coefficient (AC) extraction has been proven to be
a potentially significant application of OCT attenuation imaging. However, existing methods
for AC extraction from OCT suffer from the challenge of variability in complex tissue types in
IVOCT pullback data such as healthy vessel wall, mixed atherosclerotic plaques, plaques with a
single component and stent struts, etc. This challenge leads to the ineffectiveness in the tissue
differentiation by AC representation based on single scattering model of OCT signal. In this
paper, we propose a novel method based on multiple scattering model for parametric imaging of
optical attenuation by AC retrieval from IVOCT images conventionally acquired during cardiac
catheterization. The OCT signal characterized by the AC is physically modeled by Monte Carlo
simulation. Then, the pixel-wise AC retrieval is achieved by iteratively minimizing an error
function regarding the modeled and measured backscattered signal. This method provides a
general scheme for AC extraction from IVOCT without the premise of complete attenuation
of the incident light through the imaging depths. Results of computer-simulated and clinical
images demonstrate that the method can avoid overestimation at the end of the depth profile in
comparison with the approaches based on the depth-resolved (DR) model. The energy error
depth and structural similarity are improved by about 30% and 10% respectively compared with
DR. It provides a useful way to differentiate and characterize arterial tissue types in IVOCT
images.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

1.1. Backgrounds

Intravascular optical coherence tomography (IVOCT) plays an important role in the diagnosis of
coronary arterial atherosclerosis and the guidance of stent implantation. It is a catheter-based
imaging modality capturing real-time pullback sequences of transverse and volumetric scanning
images of arterial vessels with high resolution [1]. It provides detailed information regarding
morphological structures and microstructures of vessel wall and atherosclerotic plaques based on
backscattering of the incident near-infrared (NIR) laser in a spectral range of 1250-1350 nm [2].
Figure 1 shows the physical overview of a spectral-domain IVOCT system.

Interpretation of tomographic structural images allows for qualification of dissimilar tissue
compositions. However, a comparison mechanism of physiological information in addition to
morphological structures is required to obtain parameters with clinical diagnostic value that
aid the differentiation of tissue components along with determination of plaque vulnerability.
Quantification of tissue optical properties has been proven to be able to assist OCT image
interpretation. The attenuation coefficient (AC) has been shown a significant indicator of optical
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Fig. 1. Schematic diagram of a spectral-domain IVOCT system.

properties describing the extinction of the detected OCT signal with the depth due to optical
absorption and scattering [3]. The ACs extracted from IVOCT B-scans or three-dimensional
(3-D) pullback data can be used to differentiate thin fibrous cap, calcification and lipid rich plaque
and characterize the formation of neointima after stent implantation [3,4]. The combination of
OCT attenuation with texture features and geometric structures segmented from structural images
has been demonstrated to improve the accuracy of tissue characterization and vulnerable plaque
identification [5,6].

1.2. Related work

Based on the fact that the backscattered light is exponentially attenuated with the detection
depth in tissues, the AC is usually estimated from the measured backscattered signal by curve
fitting (CF) through single A-line analysis [7–9] or 3-D analysis [10–12]. The estimation can
be optimized by extending the fitting window in those regions with homogeneously distributed
optical properties [13]. Moreover, CF has been combined with machine learning to improve the
accuracy of tissue characterization [14,15]. The CF methods assume a constant attenuation along
a part of the A-scan. Hence, they are most suitable for use on the tissue layers with well-defined
layer structure, which subsequently reduces the automation of the methods. Besides, for thin
layer structures, AC extraction by CF is unstable and sensitive to the noise in the measured signal.
The small variations in the ACs cannot be accurately identified, limiting the OCT potential of
high resolution.

In recent years, the depth-resolved (DR) technique has been an efficient tool for AC extraction
from OCT with pixel-level resolution and high automation. Vermeer et al. [16] designed a DR
method for the first time which assumes complete attenuation of all incident light in the range
of the imaging depth, the absence of absorption and a constant scattering anisotropy. However,
overestimation is observed in the areas where the backscattered light is not fully attenuated, such
as eyelid area or hair fiber. Beside this, Vermeer’s method takes the maximum detection depth as
the upper limit of the integral of the backscattered signal, leading to errors near the end of an
A-line due to incorrect background subtraction. Furthermore, it assumes a constant confocal
function, resulting in inaccurate estimates when the focal plane is within the sample or on the
sample surface.

Amaral et al. [17] extended Vermeer’s DR model to a general model by quantifying the
attenuation of the NIR light with the transmittance. Their results show that the ACs of various
tissue types are estimated by inputting an appropriate transmittance, even for those thin tissue
layers with the thickness of 100 µm. However, this method does not take into account the multiple
scattered light, leading to wrong estimates from the weak OCT signals at the tissue boundaries.
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Liu et al. [18] developed a DR-CF approach by combining the conventional DR model with
CF to determine the cutoff depth. It preserves the CF’s advantage of high tolerance to noise
and avoids wrong estimates caused by the weak backscattered signals at the tissue boundaries.
However, it does not take into account the confocal effect and requires the focal plane to be
located above the sample, reducing the signal-to-noise ratio (SNR) of the measurements and
making some certain applications impractical.

Smith et al. [19] designed a depth-resolved confocal (DRC) method which allows for accurate
estimation of the ACs when the focusing plane is located within the sample by taking into account
both the confocal function and the sensitivity fall-off. But, overestimation is still observed in the
presence of incomplete attenuation of the incident light in deep tissues. To address Vermeer’s
assumption of full attenuation, Liu et al. [20] developed an optimized depth-resolved estimation
(ODRE) method to implement AC extraction in any depth range regardless of whether the light is
completely attenuated or not. ODRE is inapplicable to arterial vessels in IVOCT images because
OCT signals attenuate severely in arterial tissues with large ACs such as lipid plaques, leading to
an inaccurate threshold of the SNR.

Both DRC and ORDE require the prior knowledge of the confocal function parameters of
the OCT setup employed (i.e., the focal plane position and apparent Rayleigh range), which
makes some applications impractical. To address this issue, Dwork et al. [21] proposed a
fully automated DRC method called autoConfocal method. It obtains the confocal function
parameters automatically from the differences in the features between two images of the same
sample captured at slightly different view angles. However, increasing errors are observed when
the focal plane is far away from the sample because of the nearly constant confocal function.
Besides, this method is unsuitable for use on IVOCT because it is infeasible to image the same
vascular cross section from different views by using a single catheter pullback.

For clarity, Table 1 presents the overview on the major methods of OCT-based AC extraction.

1.3. Objective of The Work

In this paper, a novel model-based method is proposed for parametric imaging of attenuation by
extracting ACs in arterial cross sections from transverse IVOCT scanning images. The given data
is the conventionally acquired IVOCT gray scale images satisfying the DICOM digitalization
standard as well as the configuration parameters provided by the imaging system including the
incident light power, central wavelength and full width at half maximum (FWHM). Pixel-wise
AC estimates are achieved by iteratively minimizing an error function regarding the measured
and modeled backscattered signal which is the output of a forward model based on Monte Carlo
(MC) simulation. This method provides a general scheme for AC estimates without the premise
of complete attenuation of the incident light in tissues, as opposed to the DR-based approaches.
Experiments of numerical simulations and clinical images are conducted to verify its validity.
The influence of initial plans of iteration is discussed. The experiment of comparing with the
DRC method is also conducted.
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2. Method

Our method aims to find the AC distribution in a vascular cross section from an IVOCT gray
scale image by solving the forward problem iteratively, updating the ACs at each iteration, until
the output of the solver matches the measured OCT signal in a framework of least-squares
minimization. That is, the squared error between a measured OCT signal and the output of a
forward model is minimized by adjusting the AC. This section gives the detailed steps.

2.1. Forward modeling of IVOCT signal

AC extraction from OCT requires a quantitative model to describe the OCT signal. Two general
models have been proposed, i.e., single-scattering (SS) model [3,4] and multiple-scattering
(MS) model [22,23]. Model selection depends on the tissue type of interest. The SS model
assumes that the incident light propagates forward in the medium and is attenuated by absorption
and scattering satisfying the Lambert-Beer’s law until it is reflected back to the source by
backscattering. It is based on the premise of single backscattering of photons, thus it is suitable
for the AC extraction of a weakly scattering medium or the superficial thin layer of the highly
scattering tissue. The MS model considers multiple backscattering events and large detection
depth. Till now, there have been three approaches taking MS into account in OCT. In the order
of increasing complexity and number of parameters, they are stochastic approach based on MC
simulation [24–26], analytic approach based on extended Huygens–Fresnel model [27] and full
electromagnetic wave modeling based on Maxwell’s equations [28]. In comparison with the
MS model, the SS model has a key advantage of simplicity [3], hence it is the most commonly
used in AC extraction such as CF and DR-based methods. However, clinical observations have
demonstrated that multiple scattering can be expected in highly forward scattering tissues such as
blood and atherosclerotic plaques [3,29].

In this work, we employ MC simulation to construct the forward model of OCT signal. The
model includes three parts: Gaussian beam generation, photon propagation in the medium and
backscattered signal simulation. For simplicity, we ignore the interface reflection between the
optical elements as well as the phase change during light propagation [30]. As illustrated in Fig. 2,
in an imaging plane, the catheter remains in the image center, although it does not stay fixed
in the lumen center along the lumen length. The lumen, vessel wall intima/media, plaques and
adventitia are surrounding the catheter center from inside to outside. A rectangular coordinate
system XOY and a polar coordinate system θ-l are established in the imaging plane where the
origin O is located at the image center.

Fig. 2. A typical IVOCT B-scan image and schematic diagram of a vascular cross section.

2.1.1. Gaussian beam generation

The position and direction of the photon emission in the Gaussian beam is simulated by MC
method. Then, the propagation trajectory of the photon in the focusing system is traced generating
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the distribution function on the back surface of the lens. More details on the principle and code
of MC simulation of Gaussian beam generation can be found in Ref. [31].

2.1.2. Photon propagation in the tissues

On a microscopic scale, each vessel wall layer presents uniform optical property, while their
mirostructures are regarded as heterogeneous turbid medium. MC simulation of photon
propagation depicts the propagation trajectory of photons in a weakly absorbing and strongly
scattering media by regarding photons as typical particles and ignoring the properties of
polarization and phase of light. As illustrated in Fig. 3, photons are launched perpendicular to the
tissue surface. After multiple scattering and absorption, partial photons escape from the medium
and are finally received by the detector.

Fig. 3. Schematic diagram of scattering events of photons in tissue. θ and φ denote the
deflection angle and azimuthal angle, respectively.

As illustrated in Fig. 4, the detailed steps are as follows.

(1) Photon initialization
A single photon of weight W is launched vertically in the medium surface at an initial
position (0,0,0). Its direction cosine and weight are initialized as (0,0,1) and 1, respectively.

(2) Sampling of photon step-size
Assume the free path of a photon between two successive elastic scattering events is
determined by the Poisson probability density function with respect to the AC and the
photon free path [30]. The free path-length, i.e., the step-size of photon propagation is
given by [31]

s = −(ln ξ)/µt, (1)

where ξ is a computer-generated random number uniformly distributed in the interval
[0,1] and µt is the AC describing the decay of the incident light due to the tissue optical
properties. The pathlength Li of the i-th photon is obtained by the product of its total steps
and the refractive index of the medium.

(3) Photon energy absorption
The partial energy is absorbed by the medium once a photon moves by the distance s to the
scattering site, resulting in the reduction in the photon weight W, i.e., ∆W=µaW/µt, where
µa is the optical absorption coefficient [33].

(4) Photon scattering
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After absorption the photon undergoes the scattering event causing it is redirected. The
azimuthal angle φ is uniformly distributed from 0 to 2π and is obtained by direct sampling,
i.e., φ=2πξ. The cosine of the deflection angle θ∈[0,π] follows the Henyey-Greenstein
probability distribution function [32] as follow,

p(cos θ) =
1 − g2

2(1 + g2 − 2g cos θ)3/2
. (2)

Direct sampling gives [33]

cos θ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2g

[︃
1 + g2 −

(︂
1−g2

1−g+2gξ

)︂2
]︃

, g>0

2ξ − 1, g = 0
, (3)

where g is the scattering anisotropy factor (g=1 for multiple scattering in multi-layered
vessel wall tissues implying that all the light is scattered in the forward direction [22,34]).
The penetration depth of the photon in the medium is given by

r =
1
2

n∑︂
j

sjµz,j, (4)

where n denotes the total times of a single photon scattering in the medium, sj denotes the
step size of the j-th photon and µz,j is the direction cosine of the j-th scattering,

µz,j = − sin θ cos φ
√︂

1 − µ2
z,j−1 + µz,j−1 cos θ. (5)

(5) Ending of photon propagation

Tracking of the photon ends when its weight is less than the threshold (10−6) or when it escapes
the geometry boundaries of the medium.

2.1.3. OCT signal simulation

The MC simulation of photon propagation outputs the weights and pathlengths of the photons
collected from the medium surface. Then, the OCT signal backscattered by tissues in terms of
the radial depth ri is determined by [30]

IOCT(ri) = I0

Nph∑︂
i=1

√︁
Wi cos

[︃
2π
λc

(2ri − Li)

]︃
exp

[︄
−

(︃
2ri − Li

lcoh

)︃2
]︄

, (6)

where lcoh is the coherence length of the probe radiation,

lcoh = (2 ln 2/π) · (λc
2/∆λ) (7)

Here, I0 is a constant determined by the instrumental properties of the OCT system, Nph is
the total number of photons launched (typically ∼107), Wi is the weight of i-th detected photon
with optical pathlength Li, 2ri is the optical pathlength in the reference arm, λc is the central
wavelength of the incident radiation, and ∆λ is the FWHM of the laser spectrum. Eq. (6)
accounts for the speckle structure caused by the overlap of interference patterns. Speckles are
eliminated in simulations by using the following expression [30] instead of Eq. (6),

IOCT(ri) = I0

Nph∑︂
i=1

√︁
Wi exp

[︄
−

(︃
2ri − Li

lcoh

)︃2
]︄

(8)
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Fig. 4. Flow chart of MC simulation of photon propagation in a medium.

2.2. AC estimation by iterative optimization

The standard output of a commercially available IVOCT system is sequential pull-back gray scale
images with 8-bit gray levels overlaid with golden color maps as shown in Fig. 2. The intensity
of the measured backscattered signal at each radial depth in a vascular cross section is directly
proportional to the gray value of the corresponding image pixel,

Im(ri) = g(ri)/255, (9)

where Im(ri) is the measured OCT signal and g(ri) is the 8-bit gray value (ranging from 0 to 255)
of the pixel at ri in a standard IVOCT B-scan image.

An error function regarding the measured and modeled OCT signal is defined as follow,

f (µt(ri)) = IOCT(ri) − Im(ri), (10)

where f (·) is the error function to be minimized, µt(ri) is the AC and IOCT(ri) is the normalized
theoretical OCT signal (ranging from 0 to 1). For the convenience of expression, we denote µt(ri)
as µ. A nonlinear least squares (NLS) problem is defined as follow,

µ̂t(ri) = arg min
µ≥0

F(µ), (11)

where µ̂t(ri) is the estimated AC at ri and F(µ) is the objective function,

F(µ) = | |f (µ)| |2. (12)

F(µ) is linearly approximated by the first-order Taylor expansion,

F(µ + ∆µ) = ∥f (µ + ∆µ)∥2 ≈ ∥f (µ)∥2 + f ′(µ)∆µ +
1
2

f ′′(µ)(∆µ)2 (13)
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where f ′(µ) and f ′′(µ) are the first and second derivatives of f (µ). Thus, solving µ by Eq.(11) is
transformed into solving the optimal increment ∆µ in each iteration,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆µ̂ = arg min
∆µ

[m(∆µ)]

m(∆µ) = ∥f (µ)∥2 + f ′(µ)∆µ + 1
2 f ′′(µ)(∆µ)2 + 1

2γ(∆µ)
2

(14)

where γ is the damping factor being used to punish the excessive increment and ∆µ̂ is the optimal
increment.

As shown in Fig. 5, the iterative steps for solving Eq. (14) by Levenberg-Marquadt (L-M)
optimization are detailed as follows.

Fig. 5. Flow chart of optimization algorithm.

Step 1. Initialization.
Initialize the involved parameters including µ0, γ0, and k=0, where µ0 is the initial AC at ri,
γ0 is the initial damping factor and k is the number of iteration. µ0 can be roughly chosen by
referring to the prior histological knowledge about the tissue types. γ0 is usually initialized as
0.01 [35]. In Discussion, we will discuss the dependence of the AC estimates on the initial plans
of iteration.

Step 2. Calculate increment of iteration.
Solve the minimum of m(∆µ) by letting m′(∆µ) = 0, thus

f ′(µk) + f ′′(µk)∆µk + γk∆µk = 0, (15)

where µk, ∆µk and γk are the AC, the increment of µk and the damping factor in the k-th iteration,
respectively. Then, ∆µk is determined by

∆µk = −[f ′′(µk) + γk]
−1f ′(µk). (16)

Step 3. Calculate the similarity index.
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Consider

F (µk + ∆µk) ≈ ∥f (µk)∥
2 + f ′ (µk)∆µk +

1
2

f ′′ (µk) (∆µk)
2 +

1
2
γk (∆µk)

2 (17)

and
F(µk) ≈ ||f (µk)| |

2, (18)
thus

F (µk + ∆µk) − F (µk) ≈ f ′ (µk)∆µk +
1
2

f ′′ (µk) (∆µk)
2 +

1
2
γk (∆µk)

2 . (19)

Calculate the similarity index that measures the similarity between the linear approximation
and the real objective function as follow,

ρ =
F (µk + ∆µk) − F (µk)

f ′ (µk)∆µk +
1
2 f ′′ (µk) (∆µk)

2 + 1
2γk (∆µk)

2 . (20)

Step 4. Adjust the damping factor depending on ρ and determine µk+1.
(i) ρ≤0 corresponds to a poor linear approximation, thus determine µk+1 by

µk+1 = µk. (21)

Then, reduce the damping factor, i.e., γk+1=0.5γk, and proceed to Step 5.

(ii) ρ>0 corresponds to a good linear approximation, thus determine µk+1 by

µk+1 = µk + ∆µk. (22)

Then, adjust the damping factor as follows,

γk+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.5γk, 0<ρ ≤ 0.25

γk, 0.25<ρ ≤ 0.75

2γk, ρ>0.75

(23)

and proceed to Step 5.

Step 5. Ending of the iteration.
If

max
1≤i≤k+1

|f ′(µi)f (µi)| ≥ 0.01, (24)

proceed to Step 6; otherwise, the iteration ends and output µk+1.
Step 6. Update k by k←k+1 and turn to Step 2.
The AC at each pixel position in an image is estimated by above iterative steps. After

normalization and pseudocolor coding, the AC matrix is transformed into a parametric image.

2.3. Performance evaluation

We evaluated the proposed method experimentally using simulated images and clinical images.
The experiments of numerical simulation aim to quantitatively evaluate the accuracy of AC
extraction, discuss the influence of the initial plans of iteration and compare with other methods.
The experiments on clinical pullback image data aim to demonstrate the validity of our method
in retrieving ACs of arterial tissues and characterizing tissue types.

We implemented the method by programming with MATLAB (2016a, The MathWorks, Inc.,
Natick, MA) on a personal computer configured with a 2.6 GHz Intel Core I7-4510U as CPU,
8GB RAM and Windows 10 64 bits as the operating system. The input data involved in the
method are the total number of photons launched, the initial AC, and the central wavelength and
FWHM of the incident laser which are provided by the imaging probe.
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2.3.1. Clinical image preparation

The clinical images were acquired using a commercially available spectral-domain OCT system
(C7XR OCT system, LightLab Imaging/St. Jude Medical Inc, St Paul, MN). A 2.7F C7 Dragonfly
OCT catheter was inserted into the target vascular lumen and pushed to the distal end through the
culprit lesion. It was then drawn back automatically at 20 mm/s, while blood was displaced by an
injection of contrast media at rates of 2 to 4 ml/s. The transversal images at an A-line rate of 120
kHz with the axial spatial resolution of 15 µm and transversal resolution of 25 µm were digitally
stored for off-line analysis. Table 2 lists the operating and characteristic parameters of the setup.

Table 2. Parameters of Imaging System in Forward Simulation

Incident light
power (mW)

Noise power
(mW)

Central
wavelength
(nm)

FWHM
(nm)

Spectrometer
resolution
(nm)

Wavelength
spacing
(nm/pixel)

Maximal
detection depth
(mm)

2000 4×10−3 1310 40 0.11 0.08 2

2.3.2. Simulated image preparation

In simulation experiments, we constructed the cross-sectional geometry of computer-simulated
arterial phantoms by referring to the histological structures of healthy coronary arterial wall
and different types of atherosclerotic plaques. We employed Microsoft Visio (v.2016, Microsoft
Corporation, Redmond, State of Washington) to draw the vascular cross sections. Figure 6(a)
provides four examples, in which the structures of the arterial wall and plaques are referred to the
histology in Fig. 6(b) [18]. The radius of the vascular cross sections is 2.0 mm.

Fig. 6. Computer-simulated coronary arterial phantoms. (a) Cross-sectional geometry of
the phantoms which are numbered 1#, 2#, 3# and 4# from left to right; (b) Histological cross
sections of coronary arterial vessels and atherosclerotic plaques (Hematoxylin and eosin
stain) (Ref. [18]).

We simulated IVOCT images basing on the principle of OCT signal formation as described
in Sec. 2.1. The instrumental parameters of the OCT system were in accordance with the
characteristics of the clinical system described above. We added the Guassian random noise with
the SNR of 55 dB to the simulated OCT signal to be more close to the real situation.

2.3.3. Figures of Merit

We adopted the error percentage, energy error depth (EED) [19] and structural similarity (SSIM)
[36] to quantitatively evaluate AC estimates. The error percentage is defined by

E = (| µ̂t − µt |/µt) · 100%, (25)
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where µt and µ̂t are the preset and estimated AC value, respectively. The definition of the
error-energy is [19]

e(θi) = (| | µ̂it − µitrue | |2/| |µitrue | |2) · 100%, (26)

where θi∈[0,2π], e(θi) is the error-energy in the direction of θi in the vascular cross section and
µ̂it and µitrue are the row vectors with length M which are composed of the estimated and true
AC in the direction of θi, respectively. The EED is defined as the average detection depth when
the error-energy exceeds 5% [19]. A larger EED indicates higher estimation accuracy. The SSIM
measures the similarity between the images representing the maps of the estimated and true ACs.
It is defined by [36]

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ

2
Y + c1)(σ

2
X + σ

2
Y + c2)

, (27)

where X and Y are the true and recovered image, µX and µY are the average intensities of X
and Y, σX and σY are the standard deviation of intensities of X and Y, σXY is the covariance of
intensities of X and Y, and c1 and c2 are extremely small positive constants being used to ensure
the computational stability. A larger SSIM suggests better recovery or estimate.

3. Results

3.1. Results of simulated images

Figure 7 provides the results of the computer-simulated vessel phantoms. The simulated IVOCT
images are 300×300 pixels (8 mm×8 mm) with 8-bit gray levels. For simulation of an A-scan,
1×107 photons were employed. The A-scans from each 360° rotation were arranged in a B-scan.
In the iteration µ0=0.08 mm−1 and γ0=0.01. These results reveal that the AC maps display the
multi-layered structures of the vessel wall and plaques with significantly improved contrast in
comparison with the structural images. Table 3 lists the true and estimated AC values as well as
the error percentages lower than 10%. These convincing results indicate that our method is able
to estimate the ACs from IVOCT images with a high accuracy.

Table 3. Estimated and Preset AC Values and Error Percentages for Simulated Arterial Phantoms

Tissue type Radial depth (mm)
AC (mm−1)

Error percentage %
True value Estimate

Lumen 0∼1.0 0.5 0.452 9.600

Intima 1.0∼1.4 4 4.359 8.975

Necrotic core 1.0∼1.4 10 10.956 9.562

Lipid 1.0∼1.4 5 5.324 6.472

Mixed calcified plaque 1.0∼1.4 3 3.226 7.533

Calcification 1.0∼1.4 2 2.159 7.950

Media 1.4∼1.7 1 0.905 9.500

Adventitia 1.7∼2.0 3 3.296 9.867

3.2. Results of clinical images

Figure 8 presents the AC maps retrieved from twelve typical frames of clinical IVOCT scanning
images (300×300 pixels) containing healthy vessel wall, lesioned tissues and stent struts. The
parameter settings were the same as the simulation experiments. The regions of interest (ROIs)
including plaque areas and stent struts were manually labeled by experienced physicians. The
images of AC mapping provide information regarding the optical properties of different arterial
tissue types, which can be applied in the characterization and differentiation of vulnerable
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Fig. 7. Results of simulated demonstrations. (a) Phantom 1#; (b) Phantom 2# ; (c) Phantom
3#; (d) Phantom 4#.

plaques as well as the guidance and assessment of minimally invasive coronary interventions.
These results demonstrate the feasibility of using our method to quantitatively characterize and
differentiate at least seven different arterial tissue types, i.e., healthy vessel wall (trilaminar
structure of intima (signal-rich or high backscattering), media (signal-poor or low backscattering)
and adventitia (heterogeneous and high backscattering)), lipid-rich plaque (low-intensity and
irregular signal with an indistinct and irregular border, strong attenuation), calcification (signal-
poor or heterogeneous region with a sharp defined border), fibrous plaque (signal-rich or
high backscattering, homogeneous and weak attenuation), fibrous cap (a signal-rich tissue
layer, overlying a signal-poor region), plaque rupture (fibrous-cap disruption along with cavity
formation), thrombus (an irregular mass attached to the luminal surface, including red thrombus
(red blood cell-rich, high backscattering and high attenuation) and white thrombus (platelet-
rich, low backscattering, homogeneous and low attenuation)) [37–40]. The quantitative tissue
characterization by AC extraction is helpful to the qualitative tissue classification that relies on the
interpretation of image textures and structural features. Besides, the stents after implantation can
be assessed from the AC maps, including neointima hyperplasia, tissue prolapse (tissue protrusion
into the lumen between stent struts without apparent surface disruption), and apposition of stent
struts (malapposition: the axial distance between the strut’s surface to the luminal surface is
greater than the strut thickness; well apposed: the distance is less than the strut thickness [37]).

Table 4 presents the ranges of the histological Refs. [7,39] and estimated AC values of different
tissue types. In the table, the ranges of the ACs were measured from the manually selected
regions in the AC maps shown in Fig. 8. These results indicate that the AC estimates obtained by
our method are basically consistent with the histological references.
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Fig. 8. Clinical IVOCT images and images of AC along with manually labeled ROIs.

Table 4. Comparison of Estimates of AC from Clinical Images with
Histological References (Ref. [7,39])

Tissue name
AC (mm−1)

Histological reference Estimate

Healthy arterial wall 2∼5 2.392∼4.454

Calcified plaque 2∼7.1 1.894∼7.517

Fibrous plaque 1.07∼7.6 1.611∼6.214

Lipid plaque 7.62∼18.2 5.127∼17.162

White thrombus 5.2∼17.5 3.120∼15.652

Red thrombus 3.6∼9.6 5.852∼8.924
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3.3. Comparison results

In this section, the results of comparing our method with Smith’s DRC method [19] are given. In
our method, the initial plan of iteration is µ0=0.08 mm−1 and γ0=0.01. DRC utilizes intensity
weighted horizontal total variation (iwhTV) regularization to optimize the estimated ACs, where
the regularization parameter is η=3. Figures 9–11 present the results of the simulated images
and Fig. 12 provides the results of the clinical images.

Fig. 9. AC values along one radius of the vessel phantoms estimated by using our method
and DRC. (a) Phantom 1# (90°); (b) Phantom 2# (105°); (c) Phantom 3# (190°); (d) Phantom
4# (75°).

In our simulated phantom preparation, not all the incident light is assumed to be completely
attenuated at depths ranging from 0 to 2.0 mm. As indicated in Fig. 9, the overestimation at
the end of the depth profile (i.e., at depths ranging from 1.7 mm to 2.0 mm) is observed in the
estimates by DRC because of its premise of full attenuation. This conclusion can also be drawn
from the visualization of the AC maps shown in Fig. 10. In contrast, the estimates at the end
of the depth profile by using our method are closer to the true values than the DRC estimates.
Figure 11 suggests that both the EED and SSIM of the estimates by our method are improved by
up to 30% and 10% in comparison with those by DRC. The effective range of the AC estimation
with our method is the entire radial depth, i.e., 2.0 mm, while that of DRC is about 1.7 mm. Our
method has a relatively higher time cost than DRC because of its numerical iterative nature
in contrast to DRC’s analytical nature. Fortunately, this computational burden can be greatly
reduced by using parallel codes and a high-performance parallel computing platform that exploits
graphics processing units (GPUs).
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Fig. 10. AC maps of the true value and estimates by our method and DRC. (a) Phantom 1#;
(b) Phantom 2#; (c) Phantom 3#; (d) Phantom 4#.

Moreover, DRC has been demonstrated to be efficient in extracting ACs in horizontal layered
tissues such as bladder, skin and retina by utilizing the correlation of A-scan data to smooth tissue
layers [19]. However, coronary arteries with atherosclerotic lesions usually present complicated
anatomical structures and have various tissue compositions as well. Hence, a vascular cross
section in a transverse structural image may involve multiple tissue types, showing complex
structures instead of horizontal layered structure. Results in Fig. 12 are consistent with this
conclusion, where the transverse ambiguity is observed in the DRC estimates. Our method
outperforms DRC in the contrast of different tissues in the AC maps, especially at the end of the
depth profile.
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Fig. 11. Comparison of figures of merit and time cost of AC estimates by our method and
DRC. (a) EED; (b) SSIM; (c) Time cost.

Fig. 12. Clinical IVOCT images and AC maps provided by our method and DRC.

4. Discussion

4.1. Dependence on initial plans of iteration

We discussed the influence of the initial plans of iteration on the AC extraction based on the
simulation results. First, we compared the AC estimates obtained by changing the initial AC µ0,
while the damping factor remained unchanged, i.e., γ0=0.01. Figure 13 suggests small differences
in the AC estimates when µ0=0.02 mm−1, 0.04 mm−1, 0.06 mm−1 and 0.08 mm−1. Figure 14
indicates that the EED and SSIM of the AC estimates when µ0=0.08 mm−1 are slightly higher
than those of other cases with the least times of iteration. Second, we set the damping factor
γ0=0.01, 0.02, 0.03 and 0.04 respectively, while µ0=0.08 mm−1. The results in Fig. 15 reveal that
the lowest iteration times and time cost are achieved when γ0=0.01. In the L-M optimization, the
damping factor is adjusted dynamically during iteration, so it has major influence on the iteration
times and time cost, but minor influence on the iteration result.
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Fig. 13. Estimated values of AC in the case of different µ0. (a) Phantom 1# (90°); (b)
Phantom 2# (75°); (c) Phantom 3# (105°); (d) Phantom 4# (190°).

4.2. Discussion on model-based scheme

The AC estimation from OCT measurements is a distributed parameter estimation problem. It is
essentially the inversion of a light transport operator. We designed a model-based minimization
scheme for the recovery of AC as a function of position from IVOCT images. Two main aspects
are involved in this scheme: forward model and optimization framework. We will discuss both
issues in this section.

4.2.1. Model selection

The selection of the OCT signal model is critical in extracting AC from OCT data and it should
be based on the chemical compositions and biological characteristics of tissue regions of interest.
Considering the simplicity of the SS model, many efforts have been made to improve the accuracy
and adaptability of the SS-based schemes such as CF and DR methods. For IVOCT, clinical
applications have demonstrated that the effects of multiple scattering should be considered in
coronary arterial vessel walls with multi-layered structures and atherosclerotic plaques [3,29].
Hence, AC measurements with higher accuracy and stability will be obtained by taking into
account multiple scattering of photons in comparison with single scattering although it may be
computationally intensive.

When light propagating in a turbid medium, the attenuation is mainly caused by absorption and
scattering which are parameterized by the absorption coefficient µa and scattering coefficient µs
of tissues, respectively. The sum of µa and µs, i.e., the AC µt, represents tissue optical properties.
In OCT operating in a NIR spectrum window, the attenuation is dominated by the scattering while
the absorption by those optical absorbers is very low to achieve high enough imaging depths.
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Fig. 14. Figures of merit of AC maps obtained in the case of different µ0. (a) EED; (b)
SSIM; (c) Iteration times.

In the CF- and DR-based methods, the loss of the backscattered signal with the penetration
depth caused by optical absorption and scattering is parameterized by a decay coefficient µOCT
and then is modeled as a single exponential decay governed by the Lambert-Beer law. This
simple parameterization greatly alleviates the complexity, but sacrifices the direct relationship
with the optical properties of tissues (e.g., anisotropy factor g, µa and µs) to achieve robust and
unique measurement [4]. Moreover, the estimated µOCT may be theoretically lower than µt in the
presence of multiple scattering events because more light will be detected than expected by the
SS model due to multiple scattering.

In the model-based minimization scheme of a parameter estimation problem, the forward
signal model is required to be sufficiently accurate to capture the essential characteristics of
the light field. Besides, it should be fast enough computationally to make its use in iterative
inversion methods, where it may need to be evaluated many times [41]. In biomedical optics,
the MC method represents the gold standard for modeling light transport in biological tissues,
both due to its accuracy and its flexibility in modeling realistic, heterogeneous, multilayered
turbid media [42]. Since both the effects of multiple scattering and dependent scattering play an
important role in the quantification of optical tissue properties [43], we will take into account the
dependent scattering by utilizing the well-established MC simulation software in our future work
as has been done in [42]. Moreover, because of the inherently parallel nature of MC simulations,
the time cost could be reduced significantly by implementing the simulator on GPUs using the
compute unified device architecture (CUDA) programming language [44] as the availability of
large computing clusters and clusters of GPUs is increasing quickly [31].
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Fig. 15. Figures of merit of AC maps obtained in the case of different γ0. (a) Iteration
times; (b) Time cost; (c) EED; (b) SSIM.

4.2.2. Optimization framework

We used the least-squares minimization, a common and well-developed framework to solve the
inverse problem, where we solved the NLS problem with a L-M algorithm. The initial plans of
iteration are required to be properly selected according to the prior histological knowledge of
the tissue types and components. It may lower the automation of the method. In addition, as an
iterative scheme, the computational burden that might limit the real-time applications should
be considered. An efficient optimization tool such as Bregman [45] and fast iterative shrinkage
thresholding algorithm (FISTA) [46], parallel codes and a high-performance parallel computing
platform that exploits GPUs being used to reduce the computational burden may improve the
efficiency of our method.

In recent years, deep learning (DL) has shown great potential in the field of medical imaging
with the rapid growth of high-performance processors and big data technology. DL, especially
convolutional neural network (CNN), has been proven an efficient tool in medical image analysis,
processing and reconstruction [47]. Many efforts have also been made in DL-based approaches of
quantitative parametric imaging, such as quantitative photoacoustic imaging which aims to solve
an ill-posed inverse problem of recovering optical absorption coefficient and scattering coefficient
from acoustic measurements [48]. Big data is crucial for DL. IVOCT has been routinely applied
in minimally invasive cardiac interventions, so that a large amount of clinically acquired image
data is available, which can be used to build training data sets. Hence, in the future work, we
plan to develop an automated data-driven DL method for quantitative IVOCT by constructing a
recovery function in the form of CNN to map an input structural image to an output parametric
image of attenuation.
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5. Conclusion

We proposed a novel method based on error-minimization as an efficient tool of retrieving pixel-
wise AC distribution in vascular cross sections from IVOCT images to implement parametric
imaging of optical attenuation. We solved the NLS problem regarding the measured and
modeled backscattered signal being obtained by forward MC modeling. Results of simulated data
demonstrated the accuracy of AC extraction with the error percentage less than 10%. Results
of clinical images demonstrated the consistency of AC estimates of different tissue types with
the histological references. The parametric imaging of AC enables the differentiation and
characterization of at least seven tissue types, i.e., healthy vessel wall, lipid-rich plaque, calcified
plaque, fibrous plaque, fibrous cap, plaque rupture and red/white thrombus, as well as stent
apposition (well apposition, malapposition, intima hyperplasia and plaque prolapse). Comparison
results validate the improvement of up to 30% in the EED and 10% in the SSIM of the parametric
imaging of attenuation in comparison with the DRC approach.

One issue that must be pointed out that we evaluated the accuracy of our method quantitatively
with computer-simulated vessel phantoms. However, it is evident that an AC estimation scheme
should be further evaluated through validation measurements of tissue phantoms with well
specified attenuation coefficients as has been done in [49]. It will be another work for us in the
further study.
Funding. National Natural Science Foundations of China (62071181).
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